Effects of cycle duration of an external electrostatic field on anammox biomass activity

نویسندگان

  • Xin Yin
  • Sen Qiao
  • Jiti Zhou
چکیده

In this study, the effects of different cycle durations of an external electrostatic field on an anammox biomass were investigated. The total application time per day was 12 h at 2 V/cm for different cycle durations (i.e., continuous application-resting time) of 3 h-3 h, 6 h-6 h, and 12 h-12 h. Compared with the control reactor, the nitrogen removal rates (NRRs) increased by 18.7%, 27.4% and 8.50% using an external electrostatic field application with a continuous application time of 3 h, 6 h and 12 h. Moreover, after the reactor was running smoothly for approximately 215 days under the optimal electrostatic field condition (mode 2, continuous application-rest time: 6 h-6 h), the total nitrogen (TN) removal rate reached a peak value of approximately 6468 g-N/m(3)/d, which was 44.7% higher than the control. The increase in 16S rRNA gene copy numbers, heme c content and enzyme activities were demonstrated to be the main reasons for enhancement of the NRR of the anammox process. Additionally, transmission electron microscope observations proved that a morphological change in the anammox biomass occurred under an electrostatic field application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomass Yield Efficiency of the Marine Anammox Bacterium, “Candidatus Scalindua sp.,” is Affected by Salinity

The growth rate and biomass yield efficiency of anaerobic ammonium oxidation (anammox) bacteria are markedly lower than those of most other autotrophic bacteria. Among the anammox bacterial genera, the growth rate and biomass yield of the marine anammox bacterium "Candidatus Scalindua sp." is still lower than those of other anammox bacteria enriched from freshwater environments. The activity an...

متن کامل

Anammox enrichment and constructed wetland inoculation for improvement of wastewater treatment performance

This study contributes to the improvement of low-cost biotechnology for wastewater treatment in constructed wetlands (CWs). Constructed wetlands are energy efficient engineered systems that mimic the treatment processes of natural wetlands, removing polluting organic matter, nutrients, and pathogens from water. The aim of this study was to investigate the advisability of the inoculation of hori...

متن کامل

Nitrogen removal using an anammox membrane bioreactor at low temperature.

Membrane bioreactors (MBRs) have the ability to completely retain biomass and are thus suitable for slowly growing anammox bacteria. In the present study, an anammox MBR was operated to investigate whether the anammox activity would remain stable at low temperature, without anammox biomass washout. The maximum nitrogen removal rates were 6.7 and 1.1 g-N L⁻¹ day⁻¹ at 35 °C and 15 °C, respectivel...

متن کامل

Development of anammox reactor equipped with a degassing membrane to improve biomass retention.

In up-flow anammox reactors, one of the contributing factors to biomass wash-out is the adherence of nitrogen gas produced by the anammox reaction to biomass. In this study, we operated an up-flow anammox reactor equipped with a degassing membrane to minimize the biomass wash-out from the reactor by separating the produced gas from the biomass. In addition, both the effect of degassing on the a...

متن کامل

Anammox Start-up Using Low Activity Inoculum to Treat Low- Strength Uasb Effluent

In this work autotrophic nitrogen removal was implemented through the combined biological processes of short-cut nitrification and anoxic ammonium oxidation (anammox) in a single sequencing batch reactor (SBR). The SBR received the effluent of an upflow anaerobic sludge blanket (UASB) that treated low strength synthetic wastewater. The main challenge was to develop anammox bacteria that will be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016